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ABSTRACT

Aims. Stellar mass distribution in the Andromeda galaxy (M 31) is estimated using optical and near-infrared imaging data. Combining
the derived stellar mass model with various kinematical data, properties of the dark matter (DM) halo of the galaxy are constrained.
Methods. SDSS observations through the ugriz filters and the Spitzer imaging at 3.6 microns are used to sample the spectral energy
distribution (SED) of the galaxy at each imaging pixel. Intrinsic dust extinction effects are taken into account by using far-infrared
observations. Synthetic SEDs created with different stellar population synthesis models are fitted to the observed SEDs, providing es-
timates for the stellar mass surface density at each pixel. The stellar mass distribution of the galaxy is described with a 3-dimensional
model consisting of a nucleus, a bulge, a disc, a young disc and a halo component, each following the Einasto density distribution
(relations between different functional forms of the Einasto density distribution are given in Appendix B). By comparing the stellar
mass distribution to the observed rotation curve and kinematics of outer globular clusters and satellite galaxies, the DM halo parame-
ters are estimated.
Results. Stellar population synthesis models suggest that M 31 is dominated by old (>∼7 Gyr) stars throughout the galaxy, with the
lower limit for the stellar mass-to-light ratios M/Lr >∼ 4 M�/L�. The upper limit M/Lr <∼ 6 M�/L� is given by the rotation curve
of the galaxy. The total stellar mass is (10–15) × 1010 M�, 30% of which is in the bulge and 56% in the disc. None of the tested
DM distribution models (Einasto, NFW, Moore, Burkert) can be falsified on the basis of the stellar matter distribution and the rotation
curve of the galaxy. The virial mass M200 of the DM halo is (0.8–1.1) × 1012 M� and the virial radius is R200 = 189–213 kpc, de-
pending on the DM distribution. For the Einasto profile, the average density of the DM halo within the central 10 pc is 16–61 M� pc−3

(0.6−2.3 TeV/c2 cm−3), depending on the stellar mass model. The central density of the DM halo is comparable to that of nearby
dwarf galaxies, low-surface-brightness galaxies and distant massive disc galaxies, thus the evolution of central DM halo properties
seems to be regulated by similar processes for a broad range of halo masses, environments, and cosmological epochs.

Key words. galaxies: individual: Andromeda (M 31) – galaxies: structure – galaxies: fundamental parameters – dark matter –
galaxies: halos – galaxies: kinematics and dynamics

1. Introduction

Due to its proximity and size, our nearest large neighbour
galaxy M 31 offers a unique and attractive opportunity to study
stellar populations and galactic structure in detail. It has been
a source for groundbreaking discoveries ever since the secure
acknowledgement of this nebula as an extragalactic object by
Ernst Öpik (1922).

Self-consistent treatment of the available photometry and
kinematical data of M 31 enabled the construction of sophis-
ticated multi-component galactic models already decades ago
(e.g. Tenjes et al. 1994). Considering the huge volume and high
detail of observational information available nowadays, complex
mass models of M 31 offer a promising opportunity for cast-
ing light on one of the most puzzling problems in astrophysics
and cosmology: the nature and properties of dark matter (DM)
haloes. By now, the increasing scope of observations has en-
abled stretching mass models much further than the extent of
gas disc rotation curves, providing new clues about DM halo pa-
rameters (Geehan et al. 2006; Seigar et al. 2008; Chemin et al.
2009; Corbelli et al. 2010).

On the other hand, particle physics instrumentation has
reached a level at which it can provide some hints about DM.
Although the diffuse Galactic background likely exceeds the

expected flux of high-energy particles resulting from decay-
ing or annihilating DM in extragalactic sources (Bertone et al.
2007; Hütsi et al. 2010), particles from more concentrated ex-
tragalactic objects might be detectable as an enhancement of the
Galactic signal within certain apertures. By comparing the as-
sumed DM distribution in M 31 to the data collected with the
diverse arsenal of ground-based and space-borne detectors of
high-energy particles, some constraints on the energy spectrum
of DM particles have already been laid (e.g. Aharonian et al.
2003; Lavalle et al. 2006; Boyarsky et al. 2008; Dugger et al.
2010; Watson et al. 2012).

For more stringent constraints, not only more capable detec-
tors are needed but also a better understanding of the properties
of the source DM haloes. As bizarre as it seems, the derivation
of the detailed mass distribution of the Andromeda galaxy was
limited by the lack of suitable optical imaging up to recent times.

Although visible even to the naked eye, its span over four
degrees on the celestial sphere makes Andromeda a real chal-
lenge to observe with a usual scientific telescope. Thus it
is only very recently that observations covering the galaxy
with deep wide-field CCD imaging have started to appear:
a dedicated scan within the Sloan Digital Sky Survey (York
et al. 2000), the Canada-France-Hawaii telescope Megacam pro-
gramme PAndAS (McConnachie et al. 2009), the Pan-STARRS
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telescope project PAndromeda (Lee et al. 2012). Combined with
the space-based ultraviolet (Thilker et al. 2005), near- (Barmby
et al. 2006) and far-infrared (Gordon et al. 2006; Fritz et al.
2012) observations, these data now provide an unprecedented
panchromatic view of a galaxy at a resolution of a few parsecs,
allowing for the derivation of detailed properties of the stellar
populations.

In this paper we estimate the stellar and DM distribution of
M 31 using the SDSS and Spitzer 3.6-micron imaging to con-
strain the properties of the stellar populations. We construct a
mass distribution model of the galaxy in correspondence with
the latest kinematical data from the literature, giving estimates
for the DM halo properties and the related uncertainties.

We have taken the inclination angle of M 31 to be 77.5◦
(Walterbos & Kennicutt 1988; de Vaucouleurs et al. 1991) and
the distance to the galaxy 785 kpc (McConnachie et al. 2005),
yielding the scale 228 pc/arcmin. Throughout the paper, lumi-
nosities are presented in AB-magnitudes and are corrected for
the Galactic extinction according to Tempel et al. (2011), where
extinction corresponding to the Sloan filters is derived from the
Schlegel et al. (1998) estimates and the Galactic extinction law
by linear interpolation. The absolute solar luminosity for each
filter is taken from Blanton & Roweis (2007).

2. Observational SEDs

In an ideal case, one would study stellar populations using all
the available photometric data to sample the spectral energy dis-
tribution (SED) of a galaxy throughout the full electromagnetic
spectrum. However, we have limited ourselves here to the optical
and near-infrared section of the spectrum, since its interpretation
with synthetic stellar population models is most straightforward.
Also the stellar mass is best traced by this wavelength domain.

For deriving the observed SEDs of M 31, we relied on
the Sloan Digital Sky Survey (SDSS) observations through the
ugriz filters and the Spitzer Space Telescope IRAC camera imag-
ing at 3.6 microns. For our purposes, these observations provide
a sufficiently wide and deep coverage and the calibration of the
data is relatively well-understood.

The basic steps of the SDSS image processing and mosaic-
ing used here have been introduced in Tempel et al. (2011).
The intrinsic absorption of the galaxy has been taken into ac-
count by applying the dust disc model developed in Tempel
et al. (2010, 2011) on the basis of the far-infrared flux distri-
bution as measured by the Spitzer MIPS camera. We have used
the resultant absorption-free SDSS images for recovering the to-
tal starlight along sight-lines affected by the dust disc. The final
SDSS mosaic was resampled to 3.96 arcsec px−1.

To reconstruct the near-infrared view of M 31 we retrieved
the pipeline-calibrated and -processed (post-BCD) Spitzer im-
ages from the NASA/IPAC Infrared Science Archive. Exposures
severely suffering from cosmic rays were omitted. A mosaic im-
age was created using pointing information in the image head-
ers. The final mosaic was resampled to the same pixel scale as
the SDSS images.

The spatial resolution of the dust absorption model was lim-
ited by the point-spread-function (PSF) of the Spitzer MIPS
camera at 160 microns, thus we convolved the SDSS and Spitzer
images with the same PSF. This step improved also the signal-
to-noise ratio in the outer regions of the galaxy and removed
negative pixel values resulting from the noise after sky removal.

The images were matched with each other geometrically to
sub-pixel accuracy. Foreground stars, satellite galaxies and back-
ground objects were masked with a common mask for each filter,

constructed using SExtractor (Bertin & Arnouts 1996) and man-
ual region placing. Additionally, the noisy edges of the Spitzer
images were masked. Now the SED could be directly derived by
calibrating the intensity within each pixel to standard flux units.

3. Model SEDs

A wide variety of synthetic stellar population models is avail-
able for interpreting the observed spectral energy distributions.
In order to address possible degeneracies and uncertainties of
such models, we have used three models to reproduce the ob-
servational SEDs. The chosen models follow significantly dif-
ferent approaches for generating the properties of the synthetic
stellar populations: (I) the composite model spectra by Blanton
& Roweis (2007, hereafter B07) are composed as a mixture
of Bruzual & Charlot (2003) instantaneous-burst stellar popu-
lation models of different ages and metallicities, and models
of gas emission from MAPPINGS-III (Kewley et al. 2001);
(II) Maraston (2005, hereafter M05) models lay a special em-
phasis on the thermally pulsing asymptotic giant branch stars;
(III) the evolutionary synthesis model GALEV (Kotulla et al.
2009) is the sole model in which the chemical evolution of
gas and stars is treated self-consistently. In B07, the Chabrier
(2003) stellar initial mass function (IMF) was used; for M05 and
GALEV, we have chosen the Kroupa (2001) IMF option.

B07 provides five composite spectra corresponding to an
extremely young, an old, and three intermediate populations.
It is shown in B07 that a linear combination of these spectra
can adequately describe the spectral energy distribution of most
of the galaxies. However, this aspect alone does not necessar-
ily prove that the underlying models are meaningful; rather, it
demonstrates that the spectra are sufficiently diverse. Thus for
the M05 and GALEV models, we have followed the general
observational knowledge about the star formation history and
metallicity of M 31 to tame the age-metallicity degeneracy, as-
suming that much of the galaxy is dominated by old stars of
nearly solar metallicity, while the star-forming ring is composed
of younger stars (Bellazzini et al. 2003; Sarajedini & Jablonka
2005; Brown et al. 2006; Olsen et al. 2006; Saglia et al. 2010;
Zou et al. 2011). From the available M 05 models, we have se-
lected single-, instantaneous-burst stellar populations. GALEV
is used in the chemically consistent regime to generate old pop-
ulations with different star formation histories, with and without
an additional starburst having occurred 1–4 billion years ago to
mimic the star-forming regions.

For each set of model spectra, we sought linear combinations
of up to 5 spectra to represent the SED of M 31 within each pixel
according to the formula

f (λ)obs =
∑

i

mi f (λ)i, (1)

where f (λ)obs is the observed SED, f (λ)i are the model SEDs
per unit mass and mi are the corresponding weights of the model
SEDs. In this formalism, mi effectively measure the mass of each
model stellar population within a given pixel.

The spectra with a non-negligible contribution to the inte-
gral SED of the galaxy are listed in Table 1 together with other
relevant information. An illustration of the SED fitting within
random pixels from the bulge and disc regions of the galaxy is
presented in Fig. 1. Here, the observed flux through each of the
six filters is overlaid with the best-fitting linear combination of
the B07 composite spectra.

Following Eq. (1), the SED-fitting process yielded the stel-
lar mass of each model population within each imaging pixel.
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Table 1. Synthetic stellar populations used for SED fitting.

Name Age [Fe/H] Mtot
Lg

Mtot
Lr

Mtot
Li

Fract.

[Gyr]
[

M�
L�

] [
M�
L�

] [
M�
L�

]
(1) (2) (3) (4) (5) (6) (7)
B07-1 0.7 0.40 0.76 0.78 0.72 0.014
B07-3 0.4–1 0.05 0.47 0.50 0.56 0.003
B07-4 7–12 0.03 5.05 3.87 3.12 0.983
M05-1 1 0.00 1.11 1.00 0.85 0.008
M05-2 2 0.00 2.18 1.70 1.43 0.002
M05-3 4 0.00 3.99 3.03 2.56 0.214
M05-4 12 0.00 11.6 8.08 6.47 0.767
M05-5 12 –0.33 9.00 6.60 5.37 0.009
GALEV-1 1, 10 0.04 2.88 3.14 2.92 0.004
GALEV-2 2, 11 0.07 4.35 4.13 3.65 0.011
GALEV-3 4, 13 0.09 7.58 6.20 5.23 0.089
GALEV-4 12 0.12 4.63 4.55 4.05 0.015
GALEV-5 12 0.18 10.9 8.33 6.86 0.881

Notes. The columns contain the following: (1) stellar population model;
for B07 models the number is as in the original paper; (2) approximate
age of the dominant star-formation epoch(s); (3) average metallicity of
the stars; (4)–(6) mass-to-light ratio in the gri filters; (7) total stellar
mass fraction in M 31 of the corresponding stellar population.

For every population synthesis model, the contribution of dif-
ferent synthetic populations to the integral mass of the galaxy
is presented in the last column of Table 1. It is seen that for
each set of model spectra, the reddest spectrum (corresponding
to an old population with near-solar metallicity) dominates all
across the galaxy and dictates its population properties. It is only
within the star-forming ring that other spectra provide detectable
contribution.

The mass-to-light ratios and thus the masses of the stellar
components predicted by different population synthesis mod-
els are remarkably different, as indicated in Table 1. M05 and
GALEV give much more massive stellar populations than B07.
The scatter of the mass-to-light ratios of different models re-
sults from differences in the modelling approach and hence re-
flects the uncertainties of stellar mass estimations in general.
Although the B07 model spectra provide the most precise de-
scription of the actual SEDs, we have no grounds to state that
the B07 model represents the actual populations better than the
M05 and GALEV models. Thus in the following, we have con-
sidered this mass scatter as an uncertainty of the final mass esti-
mates. We used the B07 model for the lowest limit and planned
initially to use the other models for the upper limit of the stellar
mass. As shown below, however, the masses suggested by the
M05 and GALEV models are contradicting the rotation curve
measurements, which set a more rigid upper limit for the stellar
masses. Nevertheless, we discourage the reader to use this result
alone for judging the M05 and GALEV models in general. We
can just conclude that with our currently used configuration of
the stellar population details (i.e. the IMF, metallicity, and star
formation history), these models overestimate the realistic stel-
lar mass of M 31.

4. Stellar mass distribution

In the previous section, the stellar mass corresponding to each
model spectrum was derived for each imaging pixel. This gives
the 2-dimensional stellar mass distribution in M 31, as presented

Fig. 1. Examples of the observed (large circles) and modelled (lines)
SED for a random pixel in the bulge region (upper panel) and in the
young disc region (lower panel). The sizes of the datapoints indicate
the photometric uncertainties of each measurement. The model values
corresponding to each filter are also shown (small datapoints). In most
pixels, the reddest model population (B07-4) alone provides a good rep-
resentation of the observed SED. In the young disc regions, the stellar
populations are more diverse: in the lower panel, the B07 model popula-
tions 1, 4 and 5 contribute 24.44%, 75.52%, and 0.04% of the mass, re-
spectively. The corresponding SEDs are weighted according to the mass
fraction. In this plot, the observed SEDs and the sum of the weighted
model spectra are normalised per 1 M� at a distance of 10 pc.

Fig. 2. Stellar mass-density map of M 31. The ellipses enclose 50%,
75%, 90%, and 95% of the total mass, respectively.

in Fig. 2 for the B07 model. The distribution appears feature-
less and regular, resulting from the intensive smoothing with
the PSF of the Spitzer 160-micron imaging, but it indicates also
that the galaxy is generally undisturbed and that the intrinsic
dust-absorption effects have been removed in proper proportions
along different lines of sight.

The actual spatial distribution of stellar matter can be split
into the contributions of different galactic components. We mea-
sured the elliptically averaged stellar mass distribution from
Fig. 2 and approximated it as a superposition of the stellar com-
ponents: a nucleus, a bulge, a disc, and a halo. In addition, the
ring-like star-forming region was taken as a separate component
from the disc and is referred here as the young disc. Assuming
each component to be an ellipsoid of rotational symmetry and
constant axial ratio q, we used the Einasto law

ρ(a) = ρc exp

⎧⎪⎪⎨⎪⎪⎩−dN

⎡⎢⎢⎢⎢⎢⎣
(

a
ac

)1/N

− 1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ (2)
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Fig. 3. Mass-density distribution of the galaxy, averaged along elliptical
iso-density contours, as inferred from the B07 model (thick grey line;
its thickness indicates deviations along each ellipse), the model profile
(solid line) and the contributions of the individual stellar components
(dashed lines) to the model profile. The contribution of the model pop-
ulation B07-1 to the mass distribution is also shown; it is closely traced
by the young disc component of the model.

to describe the density distribution of a component. Here dis-
tance from the centre a =

√
r2 + z2/q2, where r and z are the

two cylindrical coordinates; dN is a function of N, such that ρc
becomes the density at distance ac, which defines the volume
containing half of the total mass of the component. The deriva-
tion of dN is presented in Appendix B. Being mathematically
identical to the Sérsic’s R1/n model but fitted to the space den-
sity, Eq. (2) provides a sufficiently flexible distribution law for
describing relaxed galactic components.

For a more accurate description of the star-forming region,
the spatial density distribution of the young disc is assumed to
have a toroidal form, approximated as a superposition of a pos-
itive and a negative density component, both following Eq. (2)
(see the last paragraph of Appendix B, for more details).

The structural parameters of all the stellar components have
been adopted from a previous analysis (Tempel et al. 2011),
also based on the SDSS data. In the referred paper, the Einasto
law was expressed with respect to the harmonic mean radius in-
stead of ac. Relations between different functional forms of the
Einasto distribution are presented in Appendix B.

Using the previously derived structural parameters and leav-
ing the component masses as free variables, we fitted these com-
ponents to the elliptically averaged stellar mass distribution. The
lower limit estimates of the masses of the stellar components, de-
rived from the B07 model, are presented in Table 2 together with
other related parameters. The upper mass limits are constrained
by the rotation curve and are 1.5 times higher for each compo-
nent (see below). The corresponding mass distribution of each
stellar component as well as the total stellar mass distribution of
the galaxy are shown in Fig. 3 for the B07 model. To illustrate
the correspondence between the young disc model component
and the first model spectrum (B07-1), the contribution of the lat-
ter to the overall mass distribution is also shown.

It is natural to suspect that a four-component fit to the galaxy
stellar mass distribution has to be degenerate to some extent. We
tested the uniqueness of the model by varying the masses of
the components and calculating the deviation of each resultant

Fig. 4. Degeneracies between the masses of the different stellar compo-
nents, shown as likelihood contours of various combinations of compo-
nent masses. The final B07 model parameters are shown with dots.

model from the observations using the Bayesian interface tool
MultiNest (Feroz & Hobson 2008; Feroz et al. 2009). The results
of the degeneracy analysis are presented in Fig. 4, indicating
the likelihood of different combinations of component masses.
Quite expectedly, the most securely determined component is the
bulge and the most unreliable mass estimates are for the young
disc and halo, both being degenerate with the disc mass to some
extent. The degeneracies would be higher, if all the component
parameters were set free. A more conservative two-component
(bulge + disc) model is described in Appendix A.

5. Dynamics and dark matter distribution

The structural model and masses of the stellar components de-
rived in Sect. 4 allowed us to calculate the gravitational potential
of stellar matter in the galaxy. The gravitational potential of a
galaxy is also traced by the rotation curve. To match the calcu-
lated rotation curve with the observed one, the contributions of
gas and DM have to be added to the stellar mass model of the
galaxy.

The contribution of gas to the potential of the galaxy is mod-
est, thus a precise description of the gas distribution in the model
is not essential. We have assumed that the distribution of the gas
disc coincides with that of the young disc simply by raising the
mass of the young disc by 6× 109 M�, which is the approximate
sum of the molecular (Dame et al. 1993; Nieten et al. 2006) and
the neutral (Carignan et al. 2006; Chemin et al. 2009; Corbelli
et al. 2010) gas mass estimates. Note that the molecular gas con-
tent is rather low in M 31, in fact even lower than the differ-
ences between the neutral gas mass estimates made by different
authors.

We have considered various functional forms of DM den-
sity distribution while incorporating a DM halo component into
the model galaxy. From observations of the dynamics of galax-
ies, distributions with a nearly constant inner density (and there-
fore, “isothermal” or “cored” haloes) have been derived, e.g. by
Burkert (1995):

ρBurkert(r) =
ρc(

1 + r
rc

) [
1 + ( r

rc
)2
] · (3)
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Table 2. Parameters of stellar components.

Component a0
a ac q N dN ρc Mcomp

b M/Lgb M/Lr
b M/Li

b

[kpc] [kpc] [M� pc−3] [1010 M�] [M�/L�] [M�/L�] [M�/L�]

Nucleus 0.01 0.0234 0.99 4.0 11.668 1.713 × 100 0.008 4.44 3.20 2.35
Bulge 0.63 1.155 0.72 2.7 7.769 9.201 × 10−1 3.1 5.34 4.08 3.01
Disc 7.7 10.67 0.17 1.2 3.273 1.307 × 10−2 5.6 5.23 3.92 2.92
Young discc 10.0 11.83 0.01 0.2 0.316 1.179 × 10−2 0.1 1.23 1.12 0.88
Stellar halo 6.3 12.22 0.50 3.0 8.669 4.459 × 10−4 1.3 6.19 4.48 3.25

Notes. Structural parameters a0, q, N, and galaxy luminosities in SDSS filters (Lg, Lr, Li) are taken from Tempel et al. (2011). Component
masses Mcomp are derived in this paper. (a) Harmonic mean radius (see Appendix B). (b) Masses and mass-light-ratios corresponding to the
B07 model, i.e. the lower limits; the upper limits (from the maximum-stellar model) are 1.5 times higher in each case. (c) The structural parameters
and ρc are given for the positive component. In the dynamical models, the gas mass 6 × 109 M� is added to the young disc.

On the other hand, N-body simulations suggest steeply rising
DM density towards the centre (therefore “cuspy” haloes), e.g.
Moore et al. (1999):

ρMoore(r) =
ρc

( r
rc

)1.5
[
1 + ( r

rc
)1.5

] (4)

and Navarro et al. (1997, hereafter NFW):

ρNFW(r) =
ρc(

r
rc

) [
1 + ( r

rc
)
]2
· (5)

In these equations, ρc is a density scale parameter.
More recently, it has been found that the Einasto distribu-

tion Eq. (2) matches with the simulated DM haloes over a wider
range of radii (Merritt et al. 2006; Navarro et al. 2010; Chemin
et al. 2011), and is gaining popularity for various applications.

Each of the four DM distributions was used in combination
with the stellar components as determined in Sect. 4 to calculate
the gravitational potential of the galactic model and the corre-
sponding rotation curve.

The model rotation curve was fitted to the observed rota-
tion curve, composed of two H i datasets from the literature:
the Westerbork telescope observations (Corbelli et al. 2010) and
data from the Effelsberg and Green Bank telescopes (Carignan
et al. 2006). We did not attempt to include observations from the
inner parts of the galaxy, where the dynamics of gas clouds is too
much affected by non-circular motions, leading to difficulties in
interpreting the data.

In addition to the gas rotation curves, we used circular veloc-
ities calculated from the measurements of the motions of glob-
ular clusters, satellite galaxies, and stellar streams (Table 3), al-
lowing us to trace the gravitational potential of M 31 out to a
projected distance of more than 500 kpc from the centre.

For fitting the model rotation curve to the observed one, the
DM halo parameters were left free, while the masses of the stel-
lar components were kept fixed. During the first runs of the fit-
ting, the Einasto shape parameter N was allowed to vary freely,
which lead to a wide variation of its value. To reduce degrees
of freedom, we applied a fixed value at N = 6.0 according to
Merritt et al. (2006) and Navarro et al. (2010).

As shown in Sect. 3, the stellar masses yielded by differ-
ent stellar population synthesis models vary by a factor of two.
We first considered two cases: the lowest-mass model with the
B07 mass estimates and the highest-mass model with the other
mass estimates. In the latter case, however, the stellar mass be-
comes too high, raising the model rotation curve above the ob-
served values at distances 10–20 kpc from the centre even with-
out the inclusion of a dark matter component (a DM halo would

Table 3. Enclosed mass estimates and the corresponding circular veloc-
ities at large galactocentric radii of M 31.

R Mass Vc Objects Reference
[kpc] [1010 M�] [km s−1]

32 39+2
−10 230+5

−32 17 globular clusters 1
37 49+12

−14 240+38
−38 21-cm data 2

41 48+34
−23 225+69

−63 17 globular clusters 1
55 55+4

−3 208+7
−6 504 globular clusters 3

60 44+26
−4 178+48

−8 349 globular clusters 4
100 79+5

−5 185+6
−6 12 satellites 5

125 75+25
−13 161+25

−15 stellar stream 6
125 74+12

−12 160+13
−14 stellar stream 7

139 80+41
−37 157+36

−42 15 satellites 8
268 137+18

−18 149+9
−10 7 satellites 9

300 140+40
−40 142+19

−22 satellites 10
560 125+180

−60 98+55
−27 11 satellites 1

560 99+146
−63 87+51

−34 16 satellites 11

References. (1) Evans & Wilkinson (2000); (2) Corbelli et al. (2010);
(3) Lee et al. (2008); (4) Galleti et al. (2006); (5) Côté et al. (2000);
(6) Ibata et al. (2004); (7) Fardal et al. (2006); (8) Tollerud et al. (2012);
(9) Courteau & van den Bergh (1999); (10) Watkins et al. (2010);
(11) Evans et al. (2000).

still be needed though to gain a match with the outer rotation
curve observations). Thus we had to abandon the idea of deter-
mining the upper limits of the masses of the stellar components
by using stellar population synthesis models.

In cases when stellar masses cannot be estimated indepen-
dently, the maximum-disc approach is often followed, i.e. first
a pure disc is fitted to the observed rotation curve with as high
mass as possible and the other components are added thereafter
in the required proportions. In the case of M 31, the disc mass-
to-light ratio is very close to the bulge one because of their simi-
lar ages and metallicities. Therefore, instead of a maximum-disc
approach, we applied a maximum-stellar model, conserving the
relative values of the mass-to-light ratios of the stellar compo-
nents as determined with stellar population synthesis models, but
multiplying them with a common constant. Without the inclu-
sion of a DM halo, the rotation curve allowed the multiplication
of the B07 stellar masses by 1.5 at maximum. Henceforth, we
are using the corresponding model (together with a minimally
required DM halo) as an upper limit of the stellar masses and
refer to it as the maximum stellar model.

Parameters of the best-fitting DM models, corresponding
to the different distribution functions and the B07 stellar mass
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Table 4. DM halo parameters for various distribution functions.

Profile ρc ρc rc M200 R200 V200 ρ−2 a−2

[M� pc−3] [GeV/c2 cm−3] [kpc] [1010 M�] [kpc] [km s−1] [GeV/c2 cm−3] [kpc]

Einastoa 8.12 ± 0.16 × 10−6 3.08 × 10−4 178 ± 18 113 213 151 8.92 × 10−2 17.44
NFW 1.10 ± 0.18 × 10−2 4.18 × 10−1 16.5 ± 1.5 104 207 147
Moore 1.46 ± 0.26 × 10−3 5.54 × 10−2 31.0 ± 3.0 106 209 148
Burkert 3.68 ± 0.40 × 10−2 1.40 × 100 9.06 ± 0.53 79 189 134

Einastoa,b 1.40 ± 0.27 × 10−6 5.32 × 10−5 387 ± 44 127 221 157 1.54 × 10−2 37.95

Notes. (a) Parameter N has been taken 6.0, yielding dN = 17.668. Spherical symmetry is assumed by taking q = 1 in Eq. (2), in which case rc = ac.
(b) Dark matter parameters for the maximum-stellar model.

Fig. 5. Upper panel: the observed rotation curve (data points with er-
ror bars) overplotted with the model (solid line). Contributions of each
component are also shown (dashed lines). The model corresponds to the
B07 stellar mass estimates and the Einasto distribution for the DM den-
sity. Lower panel: the same stellar model with four different DM density
distributions. For clarity, only the total rotation curves and the DM con-
tributions are shown.

estimates are presented in Table 4. For the Einasto DM distri-
bution, parameters corresponding to the maximum-stellar model
are also given.

The upper panel of Fig. 5 presents the observed rotation
curve, over-plotted with the curve derived from the B07 stellar
masses and the Einasto DM halo. Contributions of each stellar
component and the DM halo are also shown. In the lower panel,
model rotation curves for all the four DM models are presented.
It is seen that within the observed range of the rotation curve,
differences between different DM profiles are negligible. From
7 kpc inwards along the major axis, outside the range of observa-
tions, the model with the Burkert DM profile (and to a lesser ex-
tent, also the model with the NFW DM profile) starts to deviate
from the other models. In Fig. 6, the outer rotation curve (upper
panel) and the corresponding enclosed mass (lower panel) are
shown together with the model curves. Again, all the DM dis-
tribution models match the observations within the errorbars,

Fig. 6. Outer rotation curve observations and models (upper panel), cal-
culated for the B07 stellar masses, and the corresponding cumulative
mass (lower panel). With the exception of the Burkert distribution, all
DM models fit well to the observations.

except for the Burkert distribution, which produces a slightly
lighter DM halo, missing a few outer datapoints.

The model rotation curves for the maximum-stellar model
are shown in Fig. 7. Now the fit is somewhat worse than for
the B07 model, especially at the innermost observational data-
points, securing that the maximum-stellar model indeed provides
the very upper limits for the stellar masses.

As shown above, it is not possible to prefer any of the
given DM distribution models on the basis of the data on M 31.
Furthermore, in each case, the derived characteristic radii and
densities of the DM haloes are very degenerate, as indicated
in Fig. 8: a significant increase of the characteristic radius can
easily be compensated by lowering the characteristic density
and vice versa. In this plot, the virial mass M200, defined as
the mass within a sphere of mean density 200 times the cos-
mological critical density1 (e.g. Navarro et al. 2010), is also
shown in colour coding for each DM model. Interestingly, de-
spite the uncertainty of the DM density distribution, the virial
mass is well constrained, regardless of the chosen DM distri-
bution model. The same statement holds in Fig. 9, where the

1 Here the critical density is calculated for the Hubble constant value
H0 = 71 km s−1 Mpc−1.

A4, page 6 of 11

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220065&pdf_id=5
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220065&pdf_id=6


A. Tamm et al.: Visible and dark mass of M 31

Fig. 7. Observed rotation curve together with the maximum-stellar
model, in which the stellar masses are 1.5 times higher than in the
B07 model.

Fig. 8. Parameter likelihoods for different DM density distributions in
the case of B07 stellar masses. The virial mass corresponding to each
parameter combination is shown in colour coding; 90 × 1010 M�, 110 ×
1010 M�, and 130 × 1010 M� levels are indicated with solid contours.
For the Einasto, NFW, and Moore DM profile, the virial mass is almost
the same.

Einasto DM halo parameter likelihoods for the two stellar mass
models are compared. The virial mass is actually quite firmly
established by the outer “test particles” of the dynamics and is
almost independent of the stellar model of the galaxy. For the
“cuspy” DM profiles (Einasto, NFW, Moore), the derived virial

Fig. 9. Comparison of DM halo parameters for B07 and maximum stel-
lar mass models. In the upper panel, the virial mass corresponding to
each parameter combination is shown in colour coding; 90 × 1010 M�,
110 × 1010 M�, and 130 × 1010 M� levels are indicated with solid con-
tours. In the lower panel, virial radii are shown in colour coding, with
solid contours tracing 200, 210, and 220 kpc.

mass is (1.04–1.13) × 1012 M� and the corresponding virial ra-
dius 207−213 kpc. For the “cored” Burkert profile, the values
are 0.8 × 1012 M� and 189 kpc, respectively. In the case of the
Einasto DM distribution, a sphere extending to 10 pc from the
centre contains 16–61 M� pc−3 (0.6–2.3 TeV/c2 cm−3) of DM on
an average.

6. Discussion and comparison to previous models

Let us compare our mass models of M 31 to some other recently
constructed models. In Table 5, mass estimates suggested by our
models for the bulge, disc, and DM halo are compared to the esti-
mates by Geehan et al. (2006), Seigar et al. (2008), Chemin et al.
(2009), and Corbelli et al. (2010). For a better understanding of
the compatibility of these models, we will briefly summarise the
principal properties and differences of these models below.

The model derived by Geehan et al. (2006) consists of a cen-
tral supermassive black hole, a bulge, a disc, and a DM halo.
Its stellar components are determined using various luminos-
ity measurements in V , R, and r filters out to the (projected)
distance of 25 kpc along the major axis, and the kinematics is
based on a composite rotation curve. Mass-to-light ratios of the
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Table 5. Comparison of bulge, disc, and DM halo mass estimates.

Model Mbulge Mdisc M200

Geehan et al. (2006), best-fit (maximum-disc) model 3.3 8.4 (13.7) 68 (94)
Seigar et al. (2008), model without (with) adiabatic contraction 3.5 (3.5) 5.8 (7.3) 73 (89)
Chemin et al. (2009), “hybrid” model 2.32 7.1 100
Corbelli et al. (2010), NFW model with (M/L)bulge = (M/L)disc 3.8 8.8 85c

This work, B07 model 4.4a 5.7b 113
This work, maximum-stellar model 6.6a 8.6b 127

Notes. All masses are in 1010 M�. (a) Sum of the bulge and stellar halo masses. (b) Sum of the disc and young disc masses. (c) Recalculated from M98

in the original paper.

stellar components are treated as free parameters. The total mass
is constrained by data on the motions of outer planetary nebu-
lae, globular clusters and satellite galaxies. In Table 5, Geehan
et al. (2006) values for the best-fit model and the maximum-disc
model (in brackets) are presented.

Seigar et al. (2008) constructed a similar black hole + bulge
+ disc + DM halo model. They used the Spitzer 3.6-micron
imaging data and B−R colour profile to determine the mass-to-
light ratios; dynamical mass estimators were the same or similar
as in Geehan et al. (2006). In addition to the usual DM profiles,
Seigar et al. (2008) considered the case of a dark halo that has
undergone an adiabatic contraction due to the gravitational at-
traction of the baryonic material. In Table 5, the model with
adiabatic contraction is presented in brackets; it should not be
compared directly to the other models.

Chemin et al. (2009) constructed a black hole + bulge + disc
+ gas model, using their newer H i data for constraining the kine-
matics. For a more accurate description of the disc potential, the
disc density distribution was settled as the residual of the surface
brightness distribution after the subtraction of the bulge contri-
bution. The small contribution of gas mass was considered on the
basis of H2 and H i surveys. In Table 5, the “hybrid” model (with
the bulge mass is determined from stellar velocity dispersions
and the disc mass from simple stellar population models) values
of Chemin et al. (2009) are presented.

Corbelli et al. (2010) used a bulge + disc + gas model
together with an optional Burkert/NFW DM halo to fit their
H i kinematics data and outer dynamics estimators. The best-
fit model with equal bulge and disc mass-to-light ratios and the
NFW dark halo is shown in Table 5. We have rescaled the virial
mass M98 given by Corbelli et al. (2010) to M200.

In contrast to these four works, our stellar model is based
on fully 2-dimensional dust-corrected imaging through 6 filters
and some more recent dynamical mass estimators. Instead of the
central black hole, our model includes the nucleus of the galaxy,
which contributes significantly more to the total mass and the
model rotation curve of the galaxy. This contribution is neverthe-
less tiny and has a negligible effect on other model parameters,
as well as our usage of an oblate bulge (with an axial ratio 0.8;
Tempel et al. 2011) instead of a spherical one. In Table 5, our
B07 model and the maximum-stellar model results are given.
The actual values probably lie between the estimates of these
two models.

Table 5 shows that the bulge mass suggested by our models
is somewhat higher than in previous models, probably resulting
from different bulge parameters but also because we have used
a larger set of observational data to constrain the stellar popu-
lations. Nevertheless, the bulge dominates the total gravitational
potential only up to the radius 6–8 kpc and bulge properties have
little effect on the DM halo parameters.

Fig. 10. Average DM density inside a given radius, corresponding to
different DM distributions in the case of the B07 stellar masses. For the
Einasto DM distribution, also the maximum-stellar-mass case is plotted.
For comparison, central densities of some nearby dwarf galaxies and
low-surface-brightness galaxies are shown. The triangular/quadrangular
datapoints are calculated assuming the Burkert DM, the circular data-
points correspond to the NFW DM.

As can be seen from Table 5, the DM halo virial
mass estimates have previously remained mostly below 1 ×
1012 M�, whereas our models suggest slightly higher values,
(1.0–1.3)×1012 M�. Once again, the most likely source of dif-
ferences is our usage of a larger collection of observational data
on the outer dynamics. As shown in Figs. 8 and 9, the virial mass
is almost independent of the DM density profile and the stellar
mass model, being uniquely determined by the outer dynamics
of the galaxy.

In Fig. 10, the distribution of the average DM halo density
within a given radius is shown for each DM density distribution
model. The added datapoints provide an illustrative comparison
with DM haloes of other galaxies, for which the average central
density has been recently measured more or less reliably: nearby
dwarf galaxies (Gilmore et al. 2007; Gentile et al. 2007a,b; Oh
et al. 2011; Adams et al. 2012; Breddels et al. 2012) and low-
surface-brightness galaxies (Coccato et al. 2008; de Blok et al.
2008; Kuzio de Naray et al. 2008). Some of these values are cal-
culated for the modified-isothermal DM distribution, others for
the NFW distribution. In several cases, both versions are pre-
sented. These datapoints should be compared to the Burkert and
NFW profiles of M 31, respectively. It is seen that the central
density of DM haloes varies by a couple of orders of magnitude
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Table A.1. Parameters for the two-component model.

Comp. ac q N dN ρc Mcomp

[kpc] [M� pc−3] [1010 M�]

Bulge 2.025 0.73 4.0 11.67 2.20 × 10−1 4.9
Disc 11.35 0.10 1.0 2.67 1.72 × 10−2 4.8

and despite its higher total mass, the DM halo of M 31 cannot be
distinguished from an average dwarf or low-surface-brightness
galaxy in this aspect. Interestingly, the estimate of the central
density (0.012–0.028) M� pc−3 of DM haloes of massive disc
galaxies near redshift z � 0.9 (Tamm & Tenjes 2005) also falls
within this range, hinting that the DM halo concentration process
seems to be restricted rather uniformly over a very wide variety
of halo masses, environments, and cosmological epochs.

To conclude our work, it is interesting and also disappointing
to note that the usage of additional observational data does not
reduce significantly the uncertainties and scatter of the parame-
ters of M 31 mass distribution models. Our vague understand-
ing of the evolution of the physical properties of stellar pop-
ulations restrains the gain from all the gathered observational
information on the chemical content and formation history of
a galaxy. Despite the improved imaging and kinematics data,
we are still unable to confirm or rule out the maximum-disc or
maximum-baryonic approach in splitting the contributions of lu-
minous and dark matter to the overall mass distribution. It can
only be concluded that the bulge mass of M 31 probably lies
within the range (4.4–6.6) ×1010 M� and the disc mass within
the range (5.7–8.6) × 1010 M�. Nevertheless, M 31 provides an
exceptional opportunity to estimate the virial mass and the outer
distribution of a DM halo thanks to the possibility of tracing the
gravitational potential with various test bodies at large distances
from the galactic centre.
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Appendix A: Simple bulge and disc model of M 31

For several applications (e.g. for comparing to models of more
distant galaxies), a model of M 31 with two stellar components
is accurate enough. In Fig. A.1 we present such a model, con-
servatively taking N = 4 for the bulge and N = 1 for the disc.
The other parameters are determined by fitting the model com-
ponents to the B07 stellar mass density distribution derived in
Sect. 4; they are presented in Table A.1. The corresponding ro-
tation curve, including the contribution of the Einasto DM halo
as derived above, is compared to the observations in Fig. A.2.

Appendix B: Relations between different forms
of Einasto distribution

In our previous papers (Tempel & Tenjes 2006; Tempel et al.
2010, 2011), we have used the Einasto distribution function in
the form as originally defined and used by Jaan Einasto (1969)
and thereafter, in which the density distribution is given in re-
spect to the harmonic mean radius a0. Galaxy component is

Fig. A.1. Mass profile for two stellar components. For major (upper
panel) and minor (lower panel) axis.

Fig. A.2. The observed inner (upper panel) and outer (lower panel) ro-
tation curve compared to the model with two stellar components.

approximated by an ellipsoid of revolution with a constant ax-
ial ratio q; its spatial density distribution follows the law

ρ(a) = ρ0 exp

⎡⎢⎢⎢⎢⎢⎣−
(

a
ka0

)1/N⎤⎥⎥⎥⎥⎥⎦ , (B.1)

where ρ0 = hM/(4πqa3
0) is the central density and M is the com-

ponent mass; a =
√

r2 + z2/q2, where r and z are two cylindrical
coordinates. The coefficients h and k are normalising parameters,
dependent on the structure parameter N.
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A detailed derivation of the constant h and k depending on N
are given in Appendix B of Tenjes et al. (1994). In short, to find
h and k, the following equality must be satisfied

h−1 ≡
∞∫

0

x exp

[
−

( x
k

)1/N
]

dx =

∞∫
0

x2 exp

[
−

( x
k

)1/N
]

dx. (B.2)

These integrals can be solved analytically, giving

k =
Γ(2N)
Γ(3N)

, h =
Γ2(3N)

NΓ3(2N)
, (B.3)

where Γ is the (complete) gamma function.
The advantages of this form are the usage of the harmonic

mean radius as a good characteristic of the real extent of the
component, rather independent of the structural parameter N,
and the directly calculable integral mass (or total luminosity).

More recently, instead of the usual Navarro-Frenk-White
(NFW) formula (Navarro et al. 1997), the Einasto law has been
used for DM haloes (Navarro et al. 2004; Merritt et al. 2006). In
these works, the equation is used in the form

ρ(a) = ρc exp

⎧⎪⎪⎨⎪⎪⎩−dN

⎡⎢⎢⎢⎢⎢⎣
(

a
ac

)1/N

− 1

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭ , (B.4)

where dN is a function of N, such that ac defines a volume con-
taining half of the total mass and ρc becomes the density at radius
ac; a is the same as in Eq. (B.1). This Eq. (B.4) is in fact the same
as used by Einasto in his first paper (Einasto 1965) to describe
the spatial density distribution of galactic components.

An integral of Eq. (B.4) over some volume gives the enclosed
mass, which is finite and in the spherical case (q = 1), equal to

M(a) = 4π

a∫
0

ρ(x)x2dx = 4πNa3
cρc

edN

d3N
N

γ

⎡⎢⎢⎢⎢⎢⎢⎣3N, dN

(
a
ac

) 1
N

⎤⎥⎥⎥⎥⎥⎥⎦ , (B.5)

where γ is the lower incomplete gamma function.
Replacing γ[3N, dN(a/ac)1/N] with Γ(3N) in Eq. (B.5) gives

the total mass of the component.
The value of dN can be found exactly, by solving Γ(3N) =

2γ(3N, dN). Merritt et al. (2006) showed that the value of dN can
be approximated by the expression

dN ≈ 3N − 1/3 + 0.0079/N for N >∼ 0.5. (B.6)

A slightly more exact approximation for dN is derived in Retana-
Montenegro et al. (2012), applicable also for N >∼ 0.5.

In the upper panel of Fig. B.1 we show the mass fraction
within radius ac as a function of N, where dN is found from
Eq. (B.6). It is seen that for N >∼ 0.5, Eq. (B.6) gives a good
approximation. For lower N values, the exact solution should be
preferred for dN . Throughout this work, we have used and pre-
sented the exact dN values.

In addition to Eqs. (B.1) and (B.4), the Einasto distribution
for DM haloes has been used in the form

ρ(a) = ρ−2 exp

{−2
α

[(
a

a−2

)α
− 1

]}
, (B.7)

where α = 1/N and a−2 marks the radius where the log-
arithmic slope of the profile2 equals the isothermal value

2 In fact, in the original paper Einasto (1965) introduced just this kind
of formula. Instead of ρ−2 he used a logarithmic slope in the solar neigh-
bourhood.

Fig. B.1. Upper panel shows the mass fraction for a radius ac as a func-
tion of N, where dN is found using Eq. (B.6). Note the high amplifica-
tion level of the y-axis scale. Lower panel shows the relation between
harmonic mean radius a0, half-mass radius ac, and radius a−2; dN is
calculated using Eq. (B.5).

−dln ρ/dln a = 2. This form of the Einasto law is gaining pop-
ularity for describing DM haloes in N-body simulations (e.g.
Navarro et al. 2010), as well as applications in astroparticle
physics (e.g. Hütsi et al. 2010; Tempel et al. 2012).

All forms of the Einasto law (Eqs. (B.1), (B.4), and (B.7)) are
identical, and strict transductions exist between the parameters:

ac = a0k (dN)N , (B.8)

ρc = ρ0 exp (−dN) , (B.9)

a−2 = a0k(2N)N = ac (2N/dN)N , (B.10)

ρ−2 = ρ0 exp (−2N) = ρc exp (dN − 2N) . (B.11)

The lower panel in Fig. B.1 shows the relation between the har-
monic mean radius a0, half-mass radius ac, and radius a−2. It is
seen that with increasing N the profile becomes more extended
and also the half-mass radius increases, while a−2 decreases
compared to the harmonic mean radius a0.

Observations have demonstrated that the stellar disc can have
a toroidal form in some galaxies, i.e. it does not continue to the
centre (one example is currently studied galaxy, M 31). One sim-
ple way to represent a stellar population with the central density
minimum in the presented density distribution framework was
introduced by Einasto (Einasto 1969; Einasto et al. 1980). The
spatial density of a disc with a central hole can be expressed as
a sum of two spheroidal mass distributions

ρdisc(a) = ρ+(a) + ρ−(a), (B.12)

both of which can be approximated with the exponential
law (B.1). Characterising the extent of the minimum with a pa-
rameter κ = a0−/a0+ and adopting a model disc with a zero den-
sity at r = 0 and a non-negative density at ρdisc(a) > 0, the
following relations must hold: M− = −κ2M+, q− = q+/κ, where
κ < 1 is a parameter that determines the relative size of the hole
in the centre of the disc. The structural parameters N− and N+
should be identical.
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